
Final exam — Ordinary Differential Equations (WIGDV-07)

Thursday 29 January 2015, 9.00h–12.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. The total score for all questions equals 90. If p is the number of marks then
the exam grade is G = 1 + p/10.

Question 1 (10 points)

Solve the following initial value problem:

dy

dx
=

y

x
+ tan

(y

x

)

, y(1) =
π

4
.

What is the largest interval on which the solution exists?

Question 2 (10 points)

Solve the following Bernoulli equation:

dy

dx
= −1

x
y +

√
y, x > 0.

Question 3 (10 points)

Use an integrating factor of the formM(x, y) = xαyβ to solve the following equation:

(2y2 + 5x3y) dx+ (4xy + 3x4) dy = 0.

Question 4 (3 + 12 points)

(a) Give the definition of “a fundamental matrix for a homogeneous n×n linear
system of differential equations.”

(b) Compute a fundamental matrix for the following system:

dy

dt
=





1 0 0
0 0 1
0 −1 2



y.
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Question 5 (3 + 12 + 5 points)

(a) Formulate Banach’s fixed point theorem.

(b) Let C([0, 1]) be the space of continuous real-valued functions on the interval
[0, 1] which is equipped with the norm

‖y‖ = sup
x∈[0,1]

|y(x)|.

Consider the integral operator

T : C([0, 1]) → C([0, 1]), (Ty)(x) = η +

∫ x

0

t arctan(y(t)) dt.

Prove that for all y, z ∈ C([0, 1]) we have

‖Ty − Tz‖ ≤ 1
2
‖y − z‖.

(c) Prove that the initial value problem

dy

dx
= x arctan(y), y(0) = η

has a unique solution in the space C([0, 1]). You may use without proof that
C([0, 1]) is a Banach space.

Question 6 (10 points)

Compute the general solution of the following 3rd order equation:

u′′′ − 5u′′ + 9u′ − 5u = −5x2 + 8x− 7.

Question 7 (10 + 5 points)

Consider the semi-homogeneous boundary value problem

x2u′′ + 2xu′ = f(x), u(1) = 0, u(2) = 0,

where f(x) is a continuous function.

(a) Compute Green’s function.
Hint: the homogeneous differential equation has solutions of the form u = xλ.

(b) Use Green’s function to solve the boundary value problem for f(x) = 2x.

End of test (90 points)
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Solution question 1 (10 points)

• The variable u = y/x satisfies a differential equation with separated variables:

du

dx
=

tan u

x
⇒

∫
1

tanu
du =

∫
1

x
dx ⇒

∫
cosu

sin u
du =

∫
1

x
dx.

(2 points)

• Working out the integrals gives

log | sinu| = log |x|+ C ⇒ sin u = Kx ⇒ u = arcsin(Kx),

where K = ±eC . Hence, the general solution is given by

y = x arcsin(Kx).

(4 points)

• The initial condition y(1) = π/4 implies that K = 1/
√
2.

(2 points)

• The function arcsin(x) is defined on the closed interval [−1, 1]. Therefore,
the solution of the initial value problem is defined on the closed interval
[−1/K, 1/K] = [−

√
2,
√
2].

(2 points)

Solution question 2 (10 points)

• Since the exponent of the nonlinear term is α = 1
2
we define the new variable

z = y1−α =
√
y which satisfies a linear differential equation:

z′ +
1

2x
z =

1

2
.

(3 points)

• Multiplying the equation with the integrating factor φ(x) =
√
x gives

√
xz′ +

1

2
√
x
z =

1

2

√
x ⇔ d

dx

[√
xz

]
=

1

2

√
x ⇔ z =

x

3
+

C√
x
.

(5 points)

• Hence, the solution of Bernoulli’s equation is given by

y = z2 =

(
x

3
+

C√
x

)2

.

(2 points)

Remark. The linear differential equation for z can also be solved by first solv-
ing the homogeneous equation and then applying variation of constants to find a
particular solution.
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Solution question 3 (10 points)

• After multiplying with M(x, y) = xαyβ the equation reads as

(2xαyβ+2 + 5xα+3yβ+1)
︸ ︷︷ ︸

g

dx+ (4xα+1yβ+1 + 3xα+4yβ)
︸ ︷︷ ︸

h

dy = 0.

The equation is exact if and only if

gy = hx ⇔ 2(β + 2)xαyβ+1 + 5(β + 1)xα+3yβ = 4(α + 1)xαyβ+1 + 3(α + 4)xα+3yβ

⇔ 2(β + 2) = 4(α + 1) and 5(β + 1) = 3(α + 4)

⇔ α = 1 and β = 2.

Therefore, the integrating factor is given by M(x, y) = xy2.
(4 points)

• Next we want to find a potential function. Define

F (x, y) =

∫

g(x, y) dx+φ(y) =

∫

2xy4+5x4y3 dx+φ(y) = x2y4+x5y3+φ(y).

By construction we satisfy Fx = g. The equation Fy = h is satisfied if and
only if φ′(y) = 0. For example, we can just take φ(y) = 0.
(4 points)

• The solution of the differential equation is given by the implicit equation

F (x, y) = C ⇔ x2y4 + x5y3 = C.

where C is an arbitrary constant.
(2 points)

Solution question 4 (3 + 12 points)

(a) An n × n matrix Y (t) is a fundamental matrix for an n × n linear system
y′ = A(t)y if it has the following properties:

(i) The columns of Y (t) are solutions of the differential equation. (Equivalent
statement: Y ′(t) = A(t)Y (t).)

(ii) The columns of Y (t) are linearly independent. (Equivalent statement: Y (t)
is invertible.)

(3 points)

(b) • The coefficient matrix and its characteristic polynomial are given by

A =





1 0 0
0 0 1
0 −1 2



 ⇒ det(A− λI) = (1− λ)(λ2 − 2λ+ 1) = (1− λ)3.

Hence, λ = 1 is the only eigenvalue of A with multiplicity three.
(2 points)
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• Straightforward calculations show that

A− I =





0 0 0
0 −1 1
0 −1 1



 ∼





0 1 −1
0 0 0
0 0 0



 , (A− I)2 =





0 0 0
0 0 0
0 0 0



 .

Therefore, the first two (generalized) eigenspaces of A are given by

E1
λ = Nul(A− I) = Span











1
0
0



 ,





0
1
1











E2
λ = Nul(A− I)2 = Span











1
0
0



 ,





0
1
0



 ,





0
0
1











The dot diagram associated with the eigenvalue λ = 1 is given by

r1 = dimE1
λ = 2

r2 = dimE2
λ − dimE1

λ = 3− 2 = 1
⇒ • •

•

This means that we have one cycle of length 2 and one cycle of length 1.
(4 points)

• The 1-cycle of is just a vector v ∈ E1
λ. For example, we can choose

v =





1
0
0



 .

The 2-cycle of length 2 is given by {(A− I)w,w} where w ∈ E2
λ \E1

λ. For
example, we can choose

w =





0
0
1



 ⇒ (A− I)w =





0
1
1



 .

(2 points)

• If we choose to list the 1-cycle first, then the Jordan canonical form becomes
A = QJQ−1 with

Q =





1 0 0
0 1 0
0 1 1



 , J =





1 0 0
0 1 1
0 0 1



 .

(2 points)

• A possible fundamental matrix is given by Y (t) = eAt = QeJtQ−1. Observe
that Z(t) = eAtQ = QeJt is also a fundamental matrix. (Recall that
fundamental matrices can always be multiplied with an invertible matrix
on the right hand side.) Choosing the latter avoids the computation of Q−1

which gives

Z(t) = QeJt =





1 0 0
0 1 0
0 1 1









et 0 0
0 et tet

0 0 et



 = et





1 0 0
0 1 t
0 1 1 + t



 .

(2 points)
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Remark. Part (b) can also be solved without the Jordan canonical form. We can
write A = I +N where

I =





1 0 0
0 1 0
0 0 1



 and N =





0 0 0
0 −1 1
0 −1 1



 .

It is obvious that IN = NI which implies that we can use the rule eAt = eIteNt.
Moreover, the matrix N is nilpotent because N3 = 0. Therefore, eNt = I + Nt +
1
2
N2t2.

Note, however, that the decomposition A = D +M where

D =





1 0 0
0 0 0
0 0 2



 and M =





0 0 0
0 0 1
0 −1 0



 .

does not work. The main reason is that DM 6= MD. Hence, the rule eAt =
eDteMt can not be applied! Also observe that M is not nilpotent, which makes the
computation of eMt somewhat harder because the infinite series does not reduce to
a finite sum.

Solution question 5 (3 + 12 + 5 points)

(a) Let D be a closed nonempty subset in a Banach space B. Let the operator
T : D → B map D into itself, i.e., T (D) ⊂ D, and be a contraction: there exists
a number 0 < q < 1 such that

‖Tx− Ty‖ ≤ q‖x− y‖, ∀ x, y ∈ D,

Then the fixed point equation Tx = x has precisely one solution x̄ ∈ D.
Moreover, iterations of T converge to this fixed point:

x0 ∈ D, xn+1 = Txn ⇒ lim
n→∞

xn = x̄.

(3 points)

(b) • The mean value theorem implies that for all y, z ∈ R there exists a number
u ∈ R between y and z such that

arctan(y)− arctan(z) = arctan′(u)(y − z) =
1

1 + u2
(y − z).

(2 points)

• Hence, for all y, z ∈ C([0, 1]) and t ∈ [0, 1] we have

| arctan(y(t)))− arctan(z(t)))| ≤ |y(t)− z(t)|.
(2 points)

• For all x ∈ [0, 1] we have

|(Ty)(x)− (Tz)(x)| =

∣
∣
∣
∣

∫ x

0

t
[
arctan(y(t))− arctan(z(t))

]
dt

∣
∣
∣
∣

≤
∫ x

0

t| arctan(y(t))− arctan(z(t))| dt

≤
∫ x

0

t|y(t)− z(t)| dt.

(4 points)
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• Since |y(t)− z(t)| ≤ ‖y − z‖ for all t ∈ [0, 1] we obtain

|(Ty)(x)− (Tz)(x)| ≤
∫ x

0

t dt‖y − z‖ = 1
2
x2‖y − z‖ ≤ 1

2
‖y − z‖.

(2 points)

• Since this inequality holds for all x ∈ [0, 1] we can take the supremum on
the left hand side to obtain

‖Ty − Tz‖ ≤ 1
2
‖y − z‖.

(2 points)

(c) • Applying Banach’s fixed point theorem with

B = D = C([0, 1]), T : B → B, (Ty)(x) = η+

∫ x

0

t arctan(y(t)) dt

shows that there exists precisely one function ȳ ∈ C([0, 1]) such that

ȳ(x) = η +

∫ x

0

t arctan(ȳ(t)) dt.

(2 points)

• Moreover, satisfying the latter equation is equivalent to satisfying the initial
value problem. This proves that the initial value problem has a unique
solution in the space C([0, 1]).
(3 points)

Solution question 6 (10 points)

• The characteristic polynomial associated with the homogeneous differential
equation is given by

λ3 − 5λ2 + 9λ− 5 = (λ− 1)(λ2 − 4λ+ 5) = (λ− 1)((λ− 2)2 + 1).

The zeros of this polynomial are λ = 1 and λ = 2± i.
(3 points)

• The general solution in complex form is given by

uh = c1e
x + c2e

(2+i)x + c3e
(2−i)x.

The general solution in real form is given by

uh = d1e
x + d2e

2x cos(x) + d3e
2x sin(x).

Both solutions are accepted.
(1 point)

• For the particular solution we try a quadratic polynomial:

up = Ax2 +Bx+ C ⇒ u′

p = 2Ax+B ⇒ u′′

p = 2A.

(1 point)
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• Substitution in the nonhomogeneous equation gives

−5Ax2 + (18A− 5B)x− 10A+ 9B − 5C = −5x2 + 8x− 7.

Equating like powers of x on both sides gives the following system of equations:





−5 0 0
18 −5 0

−10 9 −5









A
B
C



 =





−5
8
7



 ,

which has the unique solution A = 1, B = 2, and C = 3.
(4 points)

• Hence, the general solution of the differential equation is given by

u = uh + up = c1e
x + c2e

(2+i)x + c3e
(2−i)x + x2 + 2x+ 3,

or, equivalently,

u = uh + up = d1e
x + d2e

2x cos(x) + d3e
2x sin(x) + x2 + 2x+ 3.

(1 point)

Solution question 7 (10 + 5 points)

(a) • The associated differential operator is given by

L = p(x)
d2

dx2
+ p′(x)

d

dx
+ q(x),

where p(x) = x2 and q(x) = 0. Substituting u = xλ in the homogeneous
differential equation Lu = 0 gives the characteristic equation

λ(λ− 1) + 2λ = 0 ⇔ λ2 + λ = 0 ⇔ λ(λ+ 1) = 0.

Hence, the general solution of the homogeneous differential equation is
given by u = a+ b/x.
(3 points)

• Next, we have to choose one function u1 that satisfies the left boundary
condition u(1) = 0 and one function u2 that satisfies the right boundary
condition u(2) = 0. For example, we can take

u1 = 1− 1

x
and u2 = 1− 2

x
.

(2 points)

• Their Wronskian is given by

W = det

[
u1 u2

u′

1 u′

2

]

= u1u
′

2 − u′

1u2 =
1

x2
.

(2 points)
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• Now we have all the ingredients to compute Green’s function:

Γ(x, ξ) =
1

W (ξ)p(ξ)
·







u1(ξ)u2(x) if 1 ≤ ξ ≤ x ≤ 2

u1(x)u2(ξ) if 1 ≤ x ≤ ξ ≤ 2

=







(

1− 1

ξ

)(

1− 2

x

)

if 1 ≤ ξ ≤ x ≤ 2

(

1− 1

x

)(

1− 2

ξ

)

if 1 ≤ x ≤ ξ ≤ 2

(3 points)

(b) • With Green’s function the boundary value problem can be solved by com-
puting the integral

u(x) =

∫ 2

1

Γ(x, ξ)f(ξ) dξ.

(1 point)

• Substituting Green’s function, f(ξ) = 2ξ, and splitting the integrals gives

u(x) =

(

1− 2

x

)∫ x

1

2ξ − 2 dξ +

(

1− 1

x

)∫ 2

x

2ξ − 4 dξ

=

(

1− 2

x

)

(x2 − 2x+ 1) +

(

1− 1

x

)

(−x2 + 4x− 4)

= −3 +
2

x
+ x.

(4 points)
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