Final exam - Ordinary Differential Equations (WIGDV-07)

Thursday 29 January 2015, 9.00h-12.00h
University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. The total score for all questions equals 90 . If p is the number of marks then the exam grade is $G=1+p / 10$.

Question 1 (10 points)

Solve the following initial value problem:

$$
\frac{d y}{d x}=\frac{y}{x}+\tan \left(\frac{y}{x}\right), \quad y(1)=\frac{\pi}{4} .
$$

What is the largest interval on which the solution exists?

Question 2 (10 points)

Solve the following Bernoulli equation:

$$
\frac{d y}{d x}=-\frac{1}{x} y+\sqrt{y}, \quad x>0 .
$$

Question 3 (10 points)

Use an integrating factor of the form $M(x, y)=x^{\alpha} y^{\beta}$ to solve the following equation:

$$
\left(2 y^{2}+5 x^{3} y\right) d x+\left(4 x y+3 x^{4}\right) d y=0
$$

Question $4(3+12$ points)

(a) Give the definition of "a fundamental matrix for a homogeneous $n \times n$ linear system of differential equations."
(b) Compute a fundamental matrix for the following system:

$$
\frac{d \mathbf{y}}{d t}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 2
\end{array}\right] \mathbf{y} .
$$

Question $5(3+12+5$ points)
(a) Formulate Banach's fixed point theorem.
(b) Let $C([0,1])$ be the space of continuous real-valued functions on the interval $[0,1]$ which is equipped with the norm

$$
\|y\|=\sup _{x \in[0,1]}|y(x)| .
$$

Consider the integral operator

$$
T: C([0,1]) \rightarrow C([0,1]), \quad(T y)(x)=\eta+\int_{0}^{x} t \arctan (y(t)) d t
$$

Prove that for all $y, z \in C([0,1])$ we have

$$
\|T y-T z\| \leq \frac{1}{2}\|y-z\|
$$

(c) Prove that the initial value problem

$$
\frac{d y}{d x}=x \arctan (y), \quad y(0)=\eta
$$

has a unique solution in the space $C([0,1])$. You may use without proof that $C([0,1])$ is a Banach space.

Question 6 (10 points)

Compute the general solution of the following 3rd order equation:

$$
u^{\prime \prime \prime}-5 u^{\prime \prime}+9 u^{\prime}-5 u=-5 x^{2}+8 x-7 .
$$

Question 7 ($10+5$ points)

Consider the semi-homogeneous boundary value problem

$$
x^{2} u^{\prime \prime}+2 x u^{\prime}=f(x), \quad u(1)=0, \quad u(2)=0,
$$

where $f(x)$ is a continuous function.
(a) Compute Green's function.

Hint: the homogeneous differential equation has solutions of the form $u=x^{\lambda}$.
(b) Use Green's function to solve the boundary value problem for $f(x)=2 x$.

End of test (90 points)

Solution question 1 (10 points)

- The variable $u=y / x$ satisfies a differential equation with separated variables:

$$
\frac{d u}{d x}=\frac{\tan u}{x} \Rightarrow \int \frac{1}{\tan u} d u=\int \frac{1}{x} d x \quad \Rightarrow \quad \int \frac{\cos u}{\sin u} d u=\int \frac{1}{x} d x
$$

(2 points)

- Working out the integrals gives

$$
\log |\sin u|=\log |x|+C \quad \Rightarrow \quad \sin u=K x \quad \Rightarrow \quad u=\arcsin (K x),
$$

where $K= \pm e^{C}$. Hence, the general solution is given by

$$
y=x \arcsin (K x) .
$$

(4 points)

- The initial condition $y(1)=\pi / 4$ implies that $K=1 / \sqrt{2}$.
(2 points)
- The function $\arcsin (x)$ is defined on the closed interval $[-1,1]$. Therefore, the solution of the initial value problem is defined on the closed interval $[-1 / K, 1 / K]=[-\sqrt{2}, \sqrt{2}]$.
(2 points)

Solution question 2 (10 points)

- Since the exponent of the nonlinear term is $\alpha=\frac{1}{2}$ we define the new variable $z=y^{1-\alpha}=\sqrt{y}$ which satisfies a linear differential equation:

$$
z^{\prime}+\frac{1}{2 x} z=\frac{1}{2} .
$$

(3 points)

- Multiplying the equation with the integrating factor $\phi(x)=\sqrt{x}$ gives

$$
\sqrt{x} z^{\prime}+\frac{1}{2 \sqrt{x}} z=\frac{1}{2} \sqrt{x} \quad \Leftrightarrow \quad \frac{d}{d x}[\sqrt{x} z]=\frac{1}{2} \sqrt{x} \quad \Leftrightarrow \quad z=\frac{x}{3}+\frac{C}{\sqrt{x}} .
$$

(5 points)

- Hence, the solution of Bernoulli's equation is given by

$$
y=z^{2}=\left(\frac{x}{3}+\frac{C}{\sqrt{x}}\right)^{2} .
$$

(2 points)
Remark. The linear differential equation for z can also be solved by first solving the homogeneous equation and then applying variation of constants to find a particular solution.

Solution question 3 (10 points)

- After multiplying with $M(x, y)=x^{\alpha} y^{\beta}$ the equation reads as

$$
\underbrace{\left(2 x^{\alpha} y^{\beta+2}+5 x^{\alpha+3} y^{\beta+1}\right)}_{g} d x+\underbrace{\left(4 x^{\alpha+1} y^{\beta+1}+3 x^{\alpha+4} y^{\beta}\right)}_{h} d y=0 .
$$

The equation is exact if and only if

$$
\begin{aligned}
g_{y}=h_{x} & \Leftrightarrow 2(\beta+2) x^{\alpha} y^{\beta+1}+5(\beta+1) x^{\alpha+3} y^{\beta}=4(\alpha+1) x^{\alpha} y^{\beta+1}+3(\alpha+4) x^{\alpha+3} y^{\beta} \\
& \Leftrightarrow 2(\beta+2)=4(\alpha+1) \quad \text { and } \quad 5(\beta+1)=3(\alpha+4) \\
& \Leftrightarrow \alpha=1 \quad \text { and } \quad \beta=2 .
\end{aligned}
$$

Therefore, the integrating factor is given by $M(x, y)=x y^{2}$. (4 points)

- Next we want to find a potential function. Define

$$
F(x, y)=\int g(x, y) d x+\phi(y)=\int 2 x y^{4}+5 x^{4} y^{3} d x+\phi(y)=x^{2} y^{4}+x^{5} y^{3}+\phi(y)
$$

By construction we satisfy $F_{x}=g$. The equation $F_{y}=h$ is satisfied if and only if $\phi^{\prime}(y)=0$. For example, we can just take $\phi(y)=0$.
(4 points)

- The solution of the differential equation is given by the implicit equation

$$
F(x, y)=C \quad \Leftrightarrow \quad x^{2} y^{4}+x^{5} y^{3}=C .
$$

where C is an arbitrary constant.
(2 points)

Solution question 4 ($3+12$ points)

(a) An $n \times n$ matrix $Y(t)$ is a fundamental matrix for an $n \times n$ linear system $\mathbf{y}^{\prime}=A(t) \mathbf{y}$ if it has the following properties:
(i) The columns of $Y(t)$ are solutions of the differential equation. (Equivalent statement: $Y^{\prime}(t)=A(t) Y(t)$.)
(ii) The columns of $Y(t)$ are linearly independent. (Equivalent statement: $Y(t)$ is invertible.)

(3 points)

(b) - The coefficient matrix and its characteristic polynomial are given by

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 2
\end{array}\right] \Rightarrow \operatorname{det}(A-\lambda I)=(1-\lambda)\left(\lambda^{2}-2 \lambda+1\right)=(1-\lambda)^{3} .
$$

Hence, $\lambda=1$ is the only eigenvalue of A with multiplicity three.

- Straightforward calculations show that

$$
A-I=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{rrr}
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad(A-I)^{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Therefore, the first two (generalized) eigenspaces of A are given by

$$
\begin{aligned}
& E_{\lambda}^{1}=\operatorname{Nul}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} \\
& E_{\lambda}^{2}=\operatorname{Nul}(A-I)^{2}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

The dot diagram associated with the eigenvalue $\lambda=1$ is given by

$$
\begin{aligned}
& r_{1}=\operatorname{dim} E_{\lambda}^{1}=2 \\
& r_{2}=\operatorname{dim} E_{\lambda}^{2}-\operatorname{dim} E_{\lambda}^{1}=3-2=1
\end{aligned} \quad \Rightarrow
$$

This means that we have one cycle of length 2 and one cycle of length 1 . (4 points)

- The 1-cycle of is just a vector $\mathbf{v} \in E_{\lambda}^{1}$. For example, we can choose

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

The 2 -cycle of length 2 is given by $\{(A-I) \mathbf{w}$, $\mathbf{w}\}$ where $\mathbf{w} \in E_{\lambda}^{2} \backslash E_{\lambda}^{1}$. For example, we can choose

$$
\mathbf{w}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \Rightarrow \quad(A-I) \mathbf{w}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

(2 points)

- If we choose to list the 1-cycle first, then the Jordan canonical form becomes $A=Q J Q^{-1}$ with

$$
Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad J=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

(2 points)

- A possible fundamental matrix is given by $Y(t)=e^{A t}=Q e^{J t} Q^{-1}$. Observe that $Z(t)=e^{A t} Q=Q e^{J t}$ is also a fundamental matrix. (Recall that fundamental matrices can always be multiplied with an invertible matrix on the right hand side.) Choosing the latter avoids the computation of Q^{-1} which gives

$$
Z(t)=Q e^{J t}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
e^{t} & 0 & 0 \\
0 & e^{t} & t e^{t} \\
0 & 0 & e^{t}
\end{array}\right]=e^{t}\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 1 & 1+t
\end{array}\right] .
$$

(2 points)

Remark. Part (b) can also be solved without the Jordan canonical form. We can write $A=I+N$ where

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad N=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

It is obvious that $I N=N I$ which implies that we can use the rule $e^{A t}=e^{I t} e^{N t}$. Moreover, the matrix N is nilpotent because $N^{3}=0$. Therefore, $e^{N t}=I+N t+$ $\frac{1}{2} N^{2} t^{2}$.

Note, however, that the decomposition $A=D+M$ where

$$
D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right] \quad \text { and } \quad M=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right] .
$$

does not work. The main reason is that $D M \neq M D$. Hence, the rule $e^{A t}=$ $e^{D t} e^{M t}$ can not be applied! Also observe that M is not nilpotent, which makes the computation of $e^{M t}$ somewhat harder because the infinite series does not reduce to a finite sum.

Solution question $5(3+12+5$ points)

(a) Let D be a closed nonempty subset in a Banach space B. Let the operator $T: D \rightarrow B$ map D into itself, i.e., $T(D) \subset D$, and be a contraction: there exists a number $0<q<1$ such that

$$
\|T x-T y\| \leq q\|x-y\|, \quad \forall x, y \in D
$$

Then the fixed point equation $T x=x$ has precisely one solution $\bar{x} \in D$. Moreover, iterations of T converge to this fixed point:

$$
x_{0} \in D, \quad x_{n+1}=T x_{n} \quad \Rightarrow \quad \lim _{n \rightarrow \infty} x_{n}=\bar{x} .
$$

(3 points)

(b) - The mean value theorem implies that for all $y, z \in \mathbb{R}$ there exists a number $u \in \mathbb{R}$ between y and z such that

$$
\arctan (y)-\arctan (z)=\arctan ^{\prime}(u)(y-z)=\frac{1}{1+u^{2}}(y-z) .
$$

(2 points)

- Hence, for all $y, z \in C([0,1])$ and $t \in[0,1]$ we have

$$
\mid \arctan (y(t)))-\arctan (z(t)))|\leq|y(t)-z(t)|
$$

(2 points)

- For all $x \in[0,1]$ we have

$$
\begin{aligned}
|(T y)(x)-(T z)(x)| & =\left|\int_{0}^{x} t[\arctan (y(t))-\arctan (z(t))] d t\right| \\
& \leq \int_{0}^{x} t|\arctan (y(t))-\arctan (z(t))| d t \\
& \leq \int_{0}^{x} t|y(t)-z(t)| d t .
\end{aligned}
$$

(4 points)

- Since $|y(t)-z(t)| \leq\|y-z\|$ for all $t \in[0,1]$ we obtain

$$
|(T y)(x)-(T z)(x)| \leq \int_{0}^{x} t d t\|y-z\|=\frac{1}{2} x^{2}\|y-z\| \leq \frac{1}{2}\|y-z\|
$$

(2 points)

- Since this inequality holds for all $x \in[0,1]$ we can take the supremum on the left hand side to obtain

$$
\|T y-T z\| \leq \frac{1}{2}\|y-z\|
$$

(2 points)

(c) - Applying Banach's fixed point theorem with
$B=D=C([0,1]), \quad T: B \rightarrow B, \quad(T y)(x)=\eta+\int_{0}^{x} t \arctan (y(t)) d t$
shows that there exists precisely one function $\bar{y} \in C([0,1])$ such that

$$
\bar{y}(x)=\eta+\int_{0}^{x} t \arctan (\bar{y}(t)) d t
$$

(2 points)

- Moreover, satisfying the latter equation is equivalent to satisfying the initial value problem. This proves that the initial value problem has a unique solution in the space $C([0,1])$.
(3 points)

Solution question 6 (10 points)

- The characteristic polynomial associated with the homogeneous differential equation is given by

$$
\lambda^{3}-5 \lambda^{2}+9 \lambda-5=(\lambda-1)\left(\lambda^{2}-4 \lambda+5\right)=(\lambda-1)\left((\lambda-2)^{2}+1\right)
$$

The zeros of this polynomial are $\lambda=1$ and $\lambda=2 \pm i$.
(3 points)

- The general solution in complex form is given by

$$
u_{h}=c_{1} e^{x}+c_{2} e^{(2+i) x}+c_{3} e^{(2-i) x} .
$$

The general solution in real form is given by

$$
u_{h}=d_{1} e^{x}+d_{2} e^{2 x} \cos (x)+d_{3} e^{2 x} \sin (x)
$$

Both solutions are accepted.
(1 point)

- For the particular solution we try a quadratic polynomial:

$$
u_{p}=A x^{2}+B x+C \quad \Rightarrow \quad u_{p}^{\prime}=2 A x+B \quad \Rightarrow \quad u_{p}^{\prime \prime}=2 A .
$$

- Substitution in the nonhomogeneous equation gives

$$
-5 A x^{2}+(18 A-5 B) x-10 A+9 B-5 C=-5 x^{2}+8 x-7
$$

Equating like powers of x on both sides gives the following system of equations:

$$
\left[\begin{array}{rrr}
-5 & 0 & 0 \\
18 & -5 & 0 \\
-10 & 9 & -5
\end{array}\right]\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=\left[\begin{array}{r}
-5 \\
8 \\
7
\end{array}\right],
$$

which has the unique solution $A=1, B=2$, and $C=3$.
(4 points)

- Hence, the general solution of the differential equation is given by

$$
u=u_{h}+u_{p}=c_{1} e^{x}+c_{2} e^{(2+i) x}+c_{3} e^{(2-i) x}+x^{2}+2 x+3,
$$

or, equivalently,

$$
u=u_{h}+u_{p}=d_{1} e^{x}+d_{2} e^{2 x} \cos (x)+d_{3} e^{2 x} \sin (x)+x^{2}+2 x+3 .
$$

(1 point)

Solution question $7(10+5$ points)

(a) - The associated differential operator is given by

$$
L=p(x) \frac{d^{2}}{d x^{2}}+p^{\prime}(x) \frac{d}{d x}+q(x),
$$

where $p(x)=x^{2}$ and $q(x)=0$. Substituting $u=x^{\lambda}$ in the homogeneous differential equation $L u=0$ gives the characteristic equation

$$
\lambda(\lambda-1)+2 \lambda=0 \quad \Leftrightarrow \quad \lambda^{2}+\lambda=0 \quad \Leftrightarrow \quad \lambda(\lambda+1)=0 .
$$

Hence, the general solution of the homogeneous differential equation is given by $u=a+b / x$.
(3 points)

- Next, we have to choose one function u_{1} that satisfies the left boundary condition $u(1)=0$ and one function u_{2} that satisfies the right boundary condition $u(2)=0$. For example, we can take

$$
u_{1}=1-\frac{1}{x} \quad \text { and } \quad u_{2}=1-\frac{2}{x}
$$

(2 points)

- Their Wronskian is given by

$$
W=\operatorname{det}\left[\begin{array}{ll}
u_{1} & u_{2} \\
u_{1}^{\prime} & u_{2}^{\prime}
\end{array}\right]=u_{1} u_{2}^{\prime}-u_{1}^{\prime} u_{2}=\frac{1}{x^{2}} .
$$

(2 points)

- Now we have all the ingredients to compute Green's function:

$$
\begin{aligned}
\Gamma(x, \xi) & =\frac{1}{W(\xi) p(\xi)} \cdot \begin{cases}u_{1}(\xi) u_{2}(x) & \text { if } 1 \leq \xi \leq x \leq 2 \\
u_{1}(x) u_{2}(\xi) & \text { if } 1 \leq x \leq \xi \leq 2\end{cases} \\
& = \begin{cases}\left(1-\frac{1}{\xi}\right)\left(1-\frac{2}{x}\right) & \text { if } 1 \leq \xi \leq x \leq 2 \\
\left(1-\frac{1}{x}\right)\left(1-\frac{2}{\xi}\right) & \text { if } 1 \leq x \leq \xi \leq 2\end{cases}
\end{aligned}
$$

(3 points)

(b) - With Green's function the boundary value problem can be solved by computing the integral

$$
u(x)=\int_{1}^{2} \Gamma(x, \xi) f(\xi) d \xi
$$

(1 point)

- Substituting Green's function, $f(\xi)=2 \xi$, and splitting the integrals gives

$$
\begin{aligned}
u(x) & =\left(1-\frac{2}{x}\right) \int_{1}^{x} 2 \xi-2 d \xi+\left(1-\frac{1}{x}\right) \int_{x}^{2} 2 \xi-4 d \xi \\
& =\left(1-\frac{2}{x}\right)\left(x^{2}-2 x+1\right)+\left(1-\frac{1}{x}\right)\left(-x^{2}+4 x-4\right) \\
& =-3+\frac{2}{x}+x .
\end{aligned}
$$

(4 points)

